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Opioid Agonists Modify Breast Cancer Cell Proliferation
by Blocking Cells to the G,/M Phase of the Cycle:
Involvement of Cytoskeletal Elements
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Abstract Opioids decrease cell proliferation in different systems including breast, prostate, lung, kidney, and
intestine, through an interaction with opioid as well as other membrane-receptor systems (somatostatin, cholinergic),
through an unidentified mechanism. Recently, we have reported an interaction of taxol with opioid membrane sites
(BBRC 235, 201-204, 1997), and an involvement of opioids to the modification of actin cytoskeleton in renal OK cells
(J Cell Biochem. [1998] 70:60-69), indicating a possible action of the opioid effect. In the present work, we have
examined the effect of two general opioid agonists (ethylketocyclazocine and etorphine) on the cell cycle, in human
breast cancer T47D cells, as well as a possible modification of the cellular cytoskeleton under their action, in order to
explain the antiproliferative effect of these agents. These two opioids produce a dose-dependent and reversible decrease
of the proliferation of T47D cells, with a maximun attained at 10~8 M. The addition of 108 M of either opioid produced
a significant increase of the number of cells arrested in the G,/M phase. Confocal laser microscopy revealed a
modification of the actin and tubulin microfilaments, with a clear redistribution at the periphery of the cell, reversed by
the addition of the general opioid antagonist diprenorphine. Furthermore, differences between the two opioids were
obvious, attributed to the different receptor affinity of each agent. The observed redistribution of actin and tubulin
cytoskeletal elements gives therefore a possible answer of the antiproliferative action of opioids. The modification of the
cytoskeleton, directly involved to cell division, might provoke a “mechanical” obstacle, which could be the reason of
the antiproliferative effect of these agonists. Furthermore, the observed tubulin-opioid interaction by opioids provides a
possible explanation of the arrest at the G,/M phase of T47D cells under opioid treatment. Nevertheless, although the
observed interaction of opioids with cytoskeletal elements gives a plausible answer of the antiproliferative effects of the
agents, this might not be the only action of these agents in cell proliferation. Other, direct or indirect, genomic actions,
which which remains to be elucidated, might be taken into consideration. J. Cell. Biochem. 73:204-211,
1999.  ©1999 Wiley-Liss, Inc.
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Previous results of our group have indicated
that opioid agonists decrease cell proliferation
in different systems, including the breast [Hat-
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zoglou et al., 1996b], prostate [Kampa et al.,
1997], and kidney [Hatzoglou et al., 1996c].
Nevertheless, the mechanism of action of these
powerful agents is not well elucidated. Opioids
act through membrane receptors, belonging to
the superfamily of the seven-loop transmem-
brane G-protein-coupled receptors [for review,
see Reisine and Bell, 1993]. Their action is
proposed to be mediated by the interaction of
the intracellular part of the receptor with Gi
proteins. However, it was reported that, in some
cases, this inhibitory action of opioids could
involve other membrane receptor systems, in-
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cluding somatostatin [Hatzoglou et al., 1995b]
or cholinergic [Maneckjee and Minna, 1990,
1994].

The modification of cell proliferation by opi-
oids could involve a specific arrest of cells in a
specific phase of the cell cycle. This implies the
interaction of opioids or their second-messen-
ger system(s) with a great number of soluble
and insoluble cellular elements, including spe-
cific cyclins, cyclin-dependent kinases, and a
great number of intermediate products of the
cell signaling machinery. On the other hand,
the precise mediation of the opioid signal is
unknown. Although the interaction of the opi-
oid receptor with Gi proteins seems to be an
early event of opioid action [Reisine and Bell,
1993], very little is known about the opioid-
related signal propagation. Very recently, we
described an interaction of opioids with actin
cytoskeleton in the opposum kidney (OK) cell
line [Papakonstanti et al., 1998]; we have pro-
posed that actin cytoskeleton might mediate, at
least some of the inhibitory effects of opioids
[Papakonstanti et al., 1998]. Furthermore, we
have described an interaction of Taxol with
membrane opioid receptors in the breast, and a
putative homology of the Taxol tubulin binding
sites with the first extracellular loop of the
opioid receptor [Bakogeorgou et al., 1997]. In
view of these results, it is tentative to look
about an opioid-cytoskeletal interaction.

In the present paper, we describe the effect of
opioid agonists on the cell cycle. Our results
indicate that, in the T47D breast cancer cell
line, opioids produce a specific block of cells at
the G,/M phase, in contrast with other antimi-
totic agents. This effect was accompanied by a
modification of the cellular cytoskeleton.

MATERIALS AND METHODS
Cell Cultures

The human breast cancer cell line T47D was
obtained at passage 86. Cells were routinely
grown in Dulbecco’'s modified Eagle’s medium
(DMEM)/F12 medium, supplemented with 10%
heat-inactivated fetal calf serum (FCS). The
cells were cultured at 37°C, in a humidified
atmosphere of 5% CO, in air.

Cell Growth Conditions

Cells were plated in 24-well plates at an
initial density of 25 X 10° cells/well supple-
mented with 1 ml medium/well. All drugs were

added to cultures 1 day after seeding (desig-
nated day 0), to ensure uniform attachment of
cells at the onset of the experiments. Cells were
grown for a total of 4 days. Opioid-containing
medium was changed every 2 days. Without the
addition of any drug, the proliferation time of
cells was 2 days. Therefore, the number of cells
in control experiments was about 100,000 at
day 4. All added drugs were dissolved, in phos-
phate-buffered saline (PBS), shortly before use.

Cell Proliferation

Cell growth was measured by the tetra-
zolium salt assay [Mosmann, 1973]. Cells were
incubated for 4 h at 37°C with the tetrazolium
salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide), and metabolically active
cells reduced the dye to purple formazan. Dark
blue crystals were dissolved with propanol. The
absorbance was measured at 570 nm and com-
pared with a standard curve of known numbers
of T47D cells. All experiments were performed
a minimum of three times, in triplicate.

Determination of Cell Cycle by Image Analysis

Cells were seeded and grown on 8-chamber
culture slides, for 4 days, in DMEM/F12 me-
dium, supplemented with 10% heat-inactivated
FCS, without or with the addition of 10-8 M of
opioid alkaloids, as described above. Determina-
tion of the cell cycle was made by quantitative
microscopy after a Feulgen-Rossenbech stoichio-
metric DNA staining. For this staining, cells
were fixed for10 min in water-acetone-formalde-
hyde (6:9:5 v/v) containing 0.02% disodium phos-
phate, 0.1% monopotasium phosphate, washed
four times with distilled water, and air dried.
Hydratation was performed by immersing slides
successively in 95% and 70% ethanol and then
in water for 10 min. This was followed by a 1-h
hydrolysis in 6 N HCI. Cells were then rinsed
four times in water for 1 min and stained for 1 h
in Schiff’'s reagent. Then they were washed four
times (1 min each) in 0.05 N HCI containing
0.026 M sodium bisulfate, then for 10 min in
running water.

The image analyzer used was the SAMBA
200-cell processor (TITN Co, Alcatel, Gernoble,
France). The image of each nucleus was ac-
quired with a X100 lens, processed in 256 den-
sitometric levels and described with 15 param-
eters [Galloway, 1975; Haralick et al., 1973]. To
permit analysis of the cells stained in different
experiments, an adjustment routine was used
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to assign the same arbitrary unit to the same
DNA content. G1 peak of control cells was as-
signed to 2,000 arbitrary units (AU). The con-
struction of characteristic files for each cell
cycle phase (GO/G1, S, G2) was realized as
described previously [Colomb et al., 1989, 1991].
Briefly, the criterion used to assign cells to each
phase was the integrated optical density. We
then fitted 3 gauss (G), to determine the mean,
and standard deviation of each population of
cells. Afterward, we made a factorial discrimi-
nant analysis, taking into account the 15 param-
eters computed on each cell. This analysis en-
abled us to determine the parameters and their
functions distinguishing the three reference
files. A decisional discriminant analysis deter-
mined the percentage of cells in each phase of
the cycle [Wallet et al., 1996]. At least one
thousand cells were analyzed per slide.

Confocal Laser Scanning Microscopy

For morphological observations by confocal
laser scanning microscopy, cells were cultured
for 3 days onto glass slides (22 X 22 mm?). In
the appropriate experiments, cells were ex-
posed to 10-8 M ethylketocyclazocine or etor-
phine, without or with the addition of 1076 M of
the general opioid antagonist diprenorphine.
Cell fixation and direct staining for fluores-
cence of microfilaments by rhodamine-phalloi-
din were performed as described previously [Pa-
pakonstanti et al., 1996, 1998]. The coverslips
were analyzed using a confocal laser scanning
module (Leica Lasertechnik, Heidelberg, Ger-
many), attached to an inverted microscope
(Zeiss IM35, Zeiss, Oberkochen, Germany),
equipped with an argon-krypton ion laser. Con-
focal images were acquired using a 63/1.25 oil
immersion objective and dedicated CLSM soft-
ware (Leica Lasertechnik, Heidelberg, Ger-
many). The image data were processed with
AVS software (Advanced Visual Systems,
Watham, MA) and a Silicon Graphics Indigo 2
workstation (Silicon Graphics, Mountain View,
CA). Fluorescence images were optimized for
brightness and contrast, transferred to a per-
sonal computer and printed on a Lexmark Op-
tra C laser printer (Lexmark, Lexington, NY),
using Corel Photo Paint 7.0 software (Corel,
Ottawa, Canada).

Materials

Rhodamine-phaloidine was obtained from Mo-
lecular Probes (Eugene, OR). Secondary goat

anti mouse antibodies, conjugated to fluoresce-
ine isocyanate (FITC) were purchases from
Chemicon (Temecula, CA). Antibody against
a-tubulin and all other chemicals were from
Sigma Chemical Co. (St. Louis, MO). EKC was
a gift from Sterling-Winthrop. Diprenorphine
and etorphine were from Reckit and Coleman
Co. Culture media were from Gibco-BRL (Gai-
thersburg, MD). All other chemicals were pur-
chased from Sigma.

RESULTS
Effect of Opioid Agonists on Cell Proliferation

As reported previously [Hatzoglou et al.,
1996c], in the T47D cell line, ethylketocyclazo-
cine and etorphine inhibited cell proliferation.
Opioid inhibition of cell growth is dose depen-
dent and reversible, in the presence of 1076 M of
the general opioid antagonist diprenorphine (not
shown). The maximal effect of opioids was ob-
tained at about 10-8 M. This concentration (108
M) was further used for the determination of
the maximal effect of opioids on cell cycle.

Effect of Opioids on the Cell Cycle

Figure 1 presents the effect of opioid agonists
on the cell cycle, as assayed by image analysis.
As shown, opioid agonists (ethylketocyclazo-
cine and etorphine) produce a significant in-
crease of cells arrested at the G,/M phase of the
cycle, as compared to control cells P < 0.001
and P < 0.0005 for ethylketocyclazocine and
etorphine, respectively). The increase in cells
arrested to the G,/M phase was accompanied by
a concomitant decrease in the percentage of
cells at the G; phase of the cycle. On the con-
trary, no significant effect of opioids on cells in
S-phase was observed (P > 0.1). This effect
provides a possible mechanism of opioid-re-
lated control of cell proliferation.

Opioids Mediate Important Microfilament
Reorganization

Actin cytoskeleton (Fig. 2). The effect of
opioid agonists on the dynamics of the actin
cytoskeleton, was examined by confocal laser
scanning microscopy. In cells cultured for 3
days in the presence of serum, but in the ab-
sence of any opioid (control) actin microfila-
ments were stained intensely, at about the me-
dian thickness of the cells. Staining was visible
in all sections up to the surface of the cells.
However, in T47D cells exposed to 108 M ethyl-
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Fig. 1. Effect of opioids on the num-
ber of cells detected by image analysis
in each phase of the cell cycle. Cells
were grown for 4 days in 8 chamber
glass slides, in the absence or the pres-
ence of 10-8 M ethylketocyclazocine
or etorphine. Thereafter, they were
stained with Feulgen-Rossenbech stoi-
chiometric DNA staining, and ana-
lyzed by quantitative microscopy. See
Materials and Methods for experimen-
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tal details. Mean =SEM of two experi-
ments in triplicate.

Fig. 2. Confocal laser scanning micrographs of T47D cells
stained with rhodamine-phalloidin. Cells were cultured in
8-chamber glass slides, for 4 days, in Dulbecco’s modified
Eagle’s medium (DMEM)/F12 medium, supplemented with 10%
heat-inactivated fetal calf serum, in the absence (Control) or in
the presence of 108 M ethylketocyclazocine or etorphine, as

ketocyclazocine, a clear redistribution of actin
filaments was observed. At the lower scanning
sections, this was characterized by intense sub-
membranous and peripheral fluorescence, while
at higher cytoplasmic scanning sections, intact
microfilaments could be recognized only to a
very limited extent. After etorphine treatment,
actin cytoskeletal changes were more dramatic.
Indeed, etorphine produced a complete reorga-
nization of the actin microfilaments, redistrib-

Control

10 M ethylketocyclazocine

10® M ethylketocyclazocine +
10® M diprenorphine

10° M etorphine

10° M etorphine +
10-6 M diprenorphine

described under Materials and Methods. The general opioid
antagonist diprenorphine (10~-¢ M) was also introduced with the
respective agonists. The first section represents the upper (api-
cal) cytoplasmic region toward the (basal) attachment site of the
cells. The step size of the optical sections was adjusted to 0.5
pm. Scale bar = 10 um.

uted them just below the plasma membrane.
This staining was intense from the lower up to
the most elevated sections. Coincubation of cells
with opioids (10~8 M), together with 1076 M
diprenorphine, a general opioid agonists, re-
versed the effect of the opioid agonist.

Tubulin network (Fig. 3). The effects of
opioids on the organization of microtubules were
also studied in T47D cells. In control cells,
cultured for 3 days in the absence of opioids in
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Fig. 3. Confocal laser scanning micrographs of microtubules
in opioid-treated T47D cells. Cells were cultured in 8-chamber
glass slides, for 4 days, in Dulbecco’s modified Eagle’s medium
(DMEM)/F12 medium, supplemented with 10% heat-inacti-
vated fetal calf serum, in the absence (Control) or in the pres-
ence of 10-8 M ethylketocyclazocine or etorphine, as described

the same serum-containing medium, tubulin
network was distributed homogeneously around
the cytoplasm. On the contrary, when T47D
cells were incubated with 10-8 M ethylketocy-
clazocine, the architecture of the tubulin net-
work was profoundly modified. Indeed, in that
case, the only staining that was visible was
under the plasma membrane. This staining was
visible in all sections, from the bottom to the
surface of the cells. When diprenorphine (106
M) was applied simultaneously with EKC, the
effect of the opioid was reversed. In contrast to
ethylketocyclazocine, etorphine (10-8 M) pro-
duced a less profound alteration in the tubulin
cytoskeleton. Although more intensive staining
was observed under the plasma membrane, tu-
bulin structures were also visible in all the
cytoplasmic region, in all sections. In this case
too, diprenorphine reversed completely the ef-
fects of the opioid.

DISCUSSION

In different cancer tissues [Levin et al., 1997,
Zagon et al., 1987], and human malignant cell
lines, including breast [Hatzoglou et al., 1996a,;
Maneckjee et al., 1990], uterus [Vertes et al.,
1996], endometrium [Hatzoglou et al., 1995a],
prostate [Kampa et al., 1997], kidney [Hatzo-

Control

10 M ethylketocyclazocine

10% M ethylketocyclazocine +
10 M diprenorphine

10 M etorphine

10* M etorphine +
10-6 M diprenorphine

under Materials and Methods. The general opioid antagonist
diprenorphine (10~6 M) was also introduced with the respective
agonists. The first section represents the upper (apical) cytoplas-
mic region toward the (basal) attachment site of the cells. The
step size of the optical sections was adjusted to 0.5 pm. Scale
bar = 10 pm.

glou et al., 1996¢], adrenals [Venihaki et al.,
1996], intestine [Zagon et al., 1996], cornea
[Zagon et al., 1995], fibroblasts [Law et al.,
1997], and the central nervous system [Vertes
et al., 1982; Zagon et al., 1991; Zagon and
McLaughlin, 1988], opioids decrease cell growth,
in a dose-dependent and reversible manner,
acting through opioid receptors. In addition,
opioid peptides induce also a decrease of cell
proliferation of normal cardiac [McLaughlin,
1996] and adult rat uterine cells, both in vitro
[Kornyei et al., 1997] and in vivo [Ordog et al.,
1993; Vertes et al., 1996], in a dose-dependent
manner. Although the classical means of opioid
receptor action is proposed to be the inhibition
of cyclic adenosine monophosphate (cCAMP) ac-
cumulation through an inhibition of adelylate
cyclase by receptor-coupled Gi proteins, very
little is known about the postreceptor events
responsible for the opioid-mediated inhibition
of cell proliferation. Recently, by the construc-
tion of chimeric receptors, based on human «
opioid receptors, it was found that k opioids
provoke increased proliferation of rat-la tissue
culture cells [Coward et al., 1998]. On the con-
trary, B-endorphin, through the increased mem-
brane transport of spermidine (an apoptotic
signal) and polyamins in T lymphocytes, in-
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creases the apoptotic death of the cells [lentile
et al., 1997], possibly explaining the antiprolif-
erative effect of opioids. A theoretical analysis
of the action of opioid alkaloids showed that
opioids increase the fraction of cells in G,/G,
state [Glasel and Agarwal, 1997]. We have very
recently described an early modification of ac-
tin cytoskeleton, 15 min after the application of
opioids, persisting for at least 2 h, in opposum
kidney (OK) cells [Papakonstanti et al., 1998].
Furthermore, Ca2* mobilization seems to play
a pivotal role in the action of opioids [Hauser et
al., 1996; Sher et al., 1996].

The results of the present investigation indi-
cate the following findings. First, opioid ago-
nists decrease the growth of human breast can-
cer cells as was reported before by our laboratory
[Hatzoglou et al., 1996b,c] or by other groups
[Maneckjee et al., 1990]. Second, cell cycle analy-
sis shows that cells are blocked at the G,/M
interphase, in contrast with the theoretical
model presented above [Glasel and Agarwal,
1997]. Two different hypotheses could explain
this latter result. The first hypothesis is that
different malignant cell lines have been used in
the two studies. Indeed, it is well established
that cancer cell lines can express different phe-
notypes, concerning cyclin content and activity.
In particular, the alterations to the cyclin D1
activity seem to play an important role for the
alteration of the retinoblastoma pathway, which
seems to be crucial for the normal tissue re-
newal through life [Sherr, 1996]. On the con-
trary, preliminary observations in T47D cells,
show that the levels of immunoreactive cyclin D
are not modified after a 3-day application of
opioids. According to the second hypothesis,
previous studies have shown that our cell lines
do not possess W opioid receptors [Hatzoglou et
al., 1996a]. Indeed, our cells respond to mor-
phine, through activation of the somatostatin
receptors [Hatzoglou et al., 1995b]. Therefore,
it might be plausible that activation of k recep-
tors lead to intracellular activation phenomena
other than those triggered by the binding of
morphine to the p opioid receptor sites.

In a recent paper, we have reported that, in
opposum kidney cells, k opioids produce early
alterations of the actin cytoskeletal network, in
a specific and reversible manner [Papakon-
stanti et al., 1998]. In the present work, we
extend this observation to the human breast
cancer cell lines. Indeed, as shown in Figures 2
and 3, ethylketocyclazocine and etorphine, two

general opioid agonists, which react with « opi-
oid sites in T47D cells [Hatzoglou et al., 1996b],
produce important changes in both actin and
tubulin network of these cells, after a 3-day
application. Indeed, both microfilaments and
microtubules are modified under the action of
opioid agonists. They are redistributed to the
periphery, under the cell membrane, leaving
the cytoplasm almost depleted from cytoskel-
etal elements.

Although the molecular mechanism of this
opioid-cytoskeletal interaction remains to be
elucidated, it is plausible that GTPses [Sy-
mons, 1996] could be involved in the signaling-
kinases pathway triggered by the addition of
opioids. Indeed, several lines of evidences sug-
gest that a possible mechanism controlling opi-
oid-cytoskeletal interactions could involve the
small GTPases of the Rho superfamily. Prelimi-
nary experiments from our group indicate that
Rho-B GTPase is signifficantly increased in opi-
oid-treated kidney OK cells (D. Duval and C.
Stournaras, unpublished observations). A de-
tailed study of these findings is now in progress,
in an effort to establish possible signaling path-
ways, leading from the opioid-receptor interac-
tion to the observed rearrangement of actin
cytoskeleton and alterations of the cell prolifera-
tion.

It is interesting to note the difference in the
effect of the two general opioid agonists used.
Indeed, ethylketocyclazocine induces an almost
complete shift of the actin network to the basal
site of the cells. On the contrary, etorphine
induces a submembrane redistribution of actin
network. Concerning tubulin, a submembrane
redistribution was the effect of ethylketocyclazo-
cine application. In contrast, etorphine-induced
effect was similar but less pronounced. Al-
though EKC and etorphine are almost general
opioid agonists, there is a clear-cut difference in
their affinity on different opioid sites: EKC binds
to 3, U, k¢, and k5 opioid sites, while etorphine
binds with high affinity to the §, [, k,, and ks
opioid sites [Castanas et al., 1985a; Castanas et
al., 1985b]. T47D cells possess very few d sites,
no U receptors, and a high concentration of all
three subtypes of the k opioid site [Hatzoglou et
al., 1996a]. In accord with these results, we
could attribute the observed effect of EKC ac-
tion on the cytoskeleton mainly to the k; site,
and those of etorphine to a preferential interac-
tion with the «, opioid receptor.



210 Panagiotou et al.

The observed redistribution of actin and tubu-
lin cytoskeletal elements gives a possible an-
swer of the antiproliferative action of opioids.
Indeed, the modification of the cytoskeleton,
directly involved to cell division, might provoke
a “mechanical” obstacle, which could be the
reason of the antiproliferative effect of these
agonists.

The observed tubulin-opioid interaction by
opioids gives a new insight into our previous
observation that Taxol, a major anticancer drug
[Rowinsky et al., 1993], with microtubule poly-
merization and stabilization properties [Arnal
and Wade, 1995; Kumar, 1981; Nogales et al.,
1995; Schiff et al., 1979; Schiff and Horwitz,
1980], can displace k opioids from their binding
sites [Bakogeorgou et al., 1997]. Indeed, the
observed modifications of tubulin are similar to
those observed in cells treated with Taxol. This
drug and opioid alkaloids are among the rare
agents that arrest the cell cycle at the G,/M
interphase.

Although the observed interaction of opioids
with cytoskeletal elements provides a plausible
explanation for the antiproliferative effects of
the agents, this might not be the only action of
these agents in cell proliferation. Indeed, we
have further observed that opioid agonists
modify the production of different intracellular
and secreted proteins [Panagiotou et al., 1998]
and further decrease the concentration of ste-
roid receptors in the cell [Panagiotou et al.,
1997]. These results imply a further, direct or
indirect, effect of opioids with the cell genome,
which remains to be elucidated.
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